6.56
3.28
3.56
6.28
ফাংশনের ডোমেন (Domain) এবং রেঞ্জ (Range) হলো ফাংশনের দুটি প্রধান বৈশিষ্ট্য।
ডোমেন হলো ফাংশনের সমস্ত সম্ভাব্য ইনপুট মানগুলোর সেট। অর্থাৎ, ফাংশনের যে মানগুলো ইনপুট হিসেবে নেওয়া যাবে, তাদের সমষ্টিকেই ফাংশনের ডোমেন বলা হয়। সাধারণত ডোমেন নির্ধারণ করতে হলে দেখতে হয় যে ফাংশনটির জন্য কোন ইনপুটগুলো গ্রহণযোগ্য।
উদাহরণ:
ধরা যাক, একটি ফাংশন \(f(x) = \frac{1}{x - 1}\)। এই ফাংশনের ডোমেন হবে সব রিয়াল সংখ্যা, তবে \(x = 1\) বাদে, কারণ \(x = 1\) হলে \(f(x)\) অসীম হয়ে যায়। তাই, ডোমেন হবে \(x \neq 1\)।
রেঞ্জ হলো ফাংশনের আউটপুটের সমস্ত সম্ভাব্য মানের সেট। অর্থাৎ, ডোমেন থেকে ইনপুট নেওয়ার পর যে মানগুলো ফাংশন থেকে আউটপুট হিসেবে পাওয়া যায়, তাদের সমষ্টিকে রেঞ্জ বলা হয়।
উদাহরণ:
ধরা যাক, \(g(x) = x^2\) একটি ফাংশন যেখানে \(x\) এর মান সব রিয়াল সংখ্যা হতে পারে। এই ক্ষেত্রে, \(g(x)\) এর আউটপুট সর্বদা ধনাত্মক বা শূন্য হবে, কারণ কোনো সংখ্যার বর্গ কখনো ঋণাত্মক হয় না। সুতরাং, এই ফাংশনের রেঞ্জ হবে শূন্য বা ধনাত্মক সব সংখ্যা, অর্থাৎ, \(y \geq 0\)।
এইভাবে, ফাংশনের ডোমেন ও রেঞ্জ ফাংশনের ইনপুট এবং আউটপুটের সীমাবদ্ধতা এবং সুযোগ নির্ধারণ করে।
ফাংশনের বিভিন্ন প্রকার রয়েছে, যা তাদের গঠন, প্রকৃতি এবং বৈশিষ্ট্যের উপর ভিত্তি করে শ্রেণিবদ্ধ করা হয়। নিচে কিছু সাধারণ ধরণের ফাংশনের তালিকা এবং তাদের সংক্ষিপ্ত ব্যাখ্যা দেওয়া হলো:
রৈখিক ফাংশনগুলোতে একটি সরলরেখা বা সোজাসুজি সম্পর্ক থাকে। সাধারণত এই ধরনের ফাংশনের ফর্ম হয় \( f(x) = mx + b \), যেখানে \( m \) হল ঢাল এবং \( b \) হল y-অক্ষের ছেদ বিন্দু।
উদাহরণ: \( f(x) = 2x + 3 \)
গৌণ ফাংশনের ডিগ্রি ২ হয় এবং এদের আকার হয় \( f(x) = ax^2 + bx + c \)। এটি একটি প্যারাবোলা আকারের গ্রাফ তৈরি করে।
উদাহরণ: \( f(x) = x^2 - 4x + 4 \)
সূচকীয় ফাংশনগুলোতে \( x \) এক্সপোনেন্ট হিসেবে থাকে এবং এর সাধারণ ফর্ম হলো \( f(x) = a \cdot b^x \), যেখানে \( b \) হলো বেস এবং \( a \) হলো একটি ধ্রুবক।
উদাহরণ: \( f(x) = 2^x \)
লগারিদমিক ফাংশনগুলো হলো সূচকীয় ফাংশনের বিপরীতধর্মী ফাংশন। এদের সাধারণ ফর্ম হলো \( f(x) = \log_b(x) \), যেখানে \( b \) বেস বা ভিত্তি।
উদাহরণ: \( f(x) = \log_2(x) \)
ত্রিকোণমিতিক ফাংশনগুলো কোণ এবং তাদের সম্পর্কিত অনুপাতের উপর ভিত্তি করে তৈরি হয়। সাধারণ ত্রিকোণমিতিক ফাংশন হলো sine (\( \sin \)), cosine (\( \cos \)), tangent (\( \tan \)) ইত্যাদি।
উদাহরণ: \( f(x) = \sin(x) \), \( f(x) = \cos(x) \)
পরম ফাংশনগুলোর আউটপুট সর্বদা ধনাত্মক হয়। সাধারণত এদের ফর্ম হলো \( f(x) = |x| \), যেখানে \( |x| \) x-এর পরম মান বোঝায়।
উদাহরণ: \( f(x) = |x - 3| \)
ধাপে ফাংশন এমন ফাংশন যা এক ধাপ থেকে আরেক ধাপে চলে যায় এবং নির্দিষ্ট মানে রূপান্তরিত হয়। এদের সাধারণ উদাহরণ হলো Heaviside Function এবং **Greatest Integer Function (Floor Function)**।
উদাহরণ: \( f(x) = \lfloor x \rfloor \)
যৌগিক ফাংশন হলো দুটি বা ততোধিক ফাংশনের সমন্বয়, যেখানে একটি ফাংশনের আউটপুট অন্য ফাংশনের ইনপুট হিসেবে ব্যবহার করা হয়। এটি সাধারণত \( f(g(x)) \) আকারে প্রকাশ করা হয়।
উদাহরণ: \( f(g(x)) \) যেখানে \( f(x) = x + 2 \) এবং \( g(x) = x^2 \), তাহলে \( f(g(x)) = x^2 + 2 \)
পূর্ণাংক ফাংশন হলো এমন ফাংশন যেখানে একটি পূর্ণ সংখ্যার ঘাত থাকে। এদের সাধারণ ফর্ম হলো \( f(x) = a_nx^n + a_{n-1}x^{n-1} + \ldots + a_0 \)।
উদাহরণ: \( f(x) = x^3 + 2x^2 + 5x + 7 \)
যুক্তিসংগত ফাংশন হলো দুটি পূর্ণাংক ফাংশনের অনুপাত। এর সাধারণ ফর্ম হলো \( f(x) = \frac{p(x)}{q(x)} \), যেখানে \( p(x) \) এবং \( q(x) \) উভয়ই পূর্ণাংক ফাংশন।
উদাহরণ: \( f(x) = \frac{2x + 3}{x - 1} \)
এই ফাংশনগুলোর বিভিন্ন প্রকারভেদ তাদের গাণিতিক বৈশিষ্ট্য এবং আচরণের কারণে বিভিন্ন গাণিতিক সমস্যার সমাধানে ব্যবহৃত হয়।
এক-এক ফাংশন (One-to-One Function) বা ইনজেক্টিভ ফাংশন হলো এমন একটি ফাংশন, যেখানে প্রতিটি ভিন্ন ইনপুটের জন্য একটি ভিন্ন আউটপুট থাকে। অর্থাৎ, যদি \( f(x_1) = f(x_2) \) হয়, তবে \( x_1 = x_2 \) হতে হবে। একে সাধারণত ইনজেক্টিভ ফাংশনও বলা হয়।
১. প্রতিটি ইনপুটের জন্য আলাদা আউটপুট: এক-এক ফাংশনে, ডোমেনের প্রতিটি ভিন্ন ইনপুট মানের জন্য একটি ভিন্ন আউটপুট মান থাকে। অর্থাৎ, \( x_1 \neq x_2 \) হলে \( f(x_1) \neq f(x_2) \) হবে।
২. হরাইজন্টাল লাইন টেস্ট: ফাংশনটির গ্রাফে কোনো হরাইজন্টাল লাইন একবারের বেশি ছেদ না করলে সেটি এক-এক ফাংশন হিসেবে বিবেচিত হবে। এই পরীক্ষাকে Horizontal Line Test বলা হয়।
ধরা যাক \( f(x) = 2x + 3 \) একটি ফাংশন। এখানে:
যেহেতু \( f(1) \neq f(2) \), এবং ডোমেনের প্রতিটি ভিন্ন মানের জন্য আলাদা আউটপুট পাওয়া যাচ্ছে, তাই এটি একটি এক-এক ফাংশন।
এক-এক ফাংশন বিভিন্ন গাণিতিক এবং প্রোগ্রামিং সমস্যায় ব্যবহৃত হয়, বিশেষ করে ইনভার্স ফাংশনের জন্য, কারণ এক-এক ফাংশনের ক্ষেত্রে প্রতিটি আউটপুটের জন্য একটি নির্দিষ্ট ইনপুট থাকে, যা ইনভার্স ফাংশন নির্ধারণে সহায়ক।
সার্বিক ফাংশন (Onto Function) বা সার্জেক্টিভ ফাংশন হলো এমন একটি ফাংশন, যেখানে রেঞ্জের প্রতিটি মানের জন্য ডোমেনের অন্তত একটি মান থাকে। অর্থাৎ, ফাংশনটির আউটপুট সেট (রেঞ্জ) পুরো কোডোমেন বা লক্ষ সেটটি পূর্ণ করে।
১. রেঞ্জ এবং কোডোমেন সমান: সার্বিক ফাংশনের রেঞ্জ এবং কোডোমেন এক এবং অভিন্ন। অর্থাৎ, ফাংশনের প্রতিটি আউটপুট মান কোডোমেনে অন্তর্ভুক্ত থাকবে এবং কোডোমেনের কোনো মান বাদ পড়বে না।
২. ইনভার্স নির্ধারণ: একটি ফাংশন যদি একসঙ্গে এক-এক এবং সার্বিক হয়, তবে তা ইনভার্টেবল হয় এবং এর ইনভার্স ফাংশনও সার্বিক হবে।
ধরা যাক, \( f: \mathbb{R} \rightarrow \mathbb{R} \) একটি ফাংশন, যেখানে \( f(x) = x^3 \)। এখানে,
সুতরাং, এই ফাংশনটি সার্বিক।
সার্বিক ফাংশন গণিত, গাণিতিক বিশ্লেষণ, এবং গাণিতিক মডেলিংয়ে গুরুত্বপূর্ণ, কারণ এটি নিশ্চিত করে যে প্রতিটি আউটপুট বা লক্ষ মানকে ইনপুট মানের মাধ্যমে অর্জন করা সম্ভব।
সংযোজিত ফাংশন (Bijective Function) হলো এমন একটি ফাংশন, যা একসঙ্গে এক-এক ফাংশন (Injective) এবং সার্বিক ফাংশন (Onto) উভয়ই। অর্থাৎ, সংযোজিত ফাংশনের প্রতিটি ইনপুট মানের জন্য একটি স্বতন্ত্র আউটপুট থাকে এবং সেই আউটপুট কোডোমেনের প্রতিটি উপাদানকে অন্তর্ভুক্ত করে। এই ধরনের ফাংশনকে বাইজেক্টিভ ফাংশনও বলা হয়।
১. এক-এক এবং সার্বিক উভয়ই: সংযোজিত ফাংশন এমন একটি ফাংশন, যা একদিকে যেমন এক-এক ফাংশনের শর্ত পূরণ করে, অর্থাৎ প্রতিটি ইনপুট মানের জন্য একটি স্বতন্ত্র আউটপুট থাকে, অন্যদিকে এটি সার্বিকও, অর্থাৎ কোডোমেনের প্রতিটি উপাদান একটি ইনপুটের মাধ্যমে অর্জন করা যায়।
২. ইনভার্স ফাংশনের অস্তিত্ব: যেহেতু সংযোজিত ফাংশনে প্রতিটি আউটপুটের জন্য একটি নির্দিষ্ট ইনপুট থাকে এবং ফাংশনটি কোডোমেনের সমস্ত মানকে অন্তর্ভুক্ত করে, তাই এই ধরনের ফাংশনের ইনভার্স ফাংশন থাকা সম্ভব। অর্থাৎ, সংযোজিত ফাংশন ইনভার্টেবল।
ধরা যাক, \( f: \mathbb{R} \rightarrow \mathbb{R} \) একটি ফাংশন, যেখানে \( f(x) = 2x + 3 \)।
এখন, যেহেতু এই ফাংশনটি একসঙ্গে এক-এক এবং সার্বিক, তাই এটি একটি সংযোজিত ফাংশন।
সংযোজিত ফাংশন গণিতে অত্যন্ত গুরুত্বপূর্ণ, বিশেষ করে ফাংশনের ইনভার্স খুঁজে বের করতে এবং সমীকরণের সমাধানে। সংযোজিত ফাংশন ব্যবহার করে ডেটাবেস মডেলিং, এনক্রিপশন এবং ডিকোডিং প্রক্রিয়ায় কার্যকর উপায়ে কাজ করা যায়।
অভেদ ফাংশন (Identity Function) হলো এমন একটি ফাংশন, যেখানে প্রতিটি ইনপুটের আউটপুট তার সমান থাকে। অর্থাৎ, অভেদ ফাংশন প্রতিটি মানকে অপরিবর্তিত রেখে তা ফেরত দেয়। এটি সাধারণত \( I(x) = x \) আকারে প্রকাশ করা হয়, যেখানে \( x \) ইনপুট এবং \( I(x) \) তার আউটপুট।
১. অপরিবর্তিত আউটপুট: অভেদ ফাংশনে প্রতিটি ইনপুট \( x \)-এর জন্য আউটপুটও \( x \) হয়। অর্থাৎ, \( I(x) = x \)।
২. গ্রাফ: অভেদ ফাংশনের গ্রাফ \( y = x \) রেখা বরাবর একটি সোজাসুজি রেখা হয়, যা মূলবিন্দুর (origin) উপর দিয়ে চলে।
৩. ফাংশনের কম্পোজিশনে ভূমিকা: অভেদ ফাংশন ফাংশন কম্পোজিশনে গুরুত্বপূর্ণ ভূমিকা পালন করে, কারণ যে কোনো ফাংশন \( f \)-এর জন্য, \( f \circ I = f \) এবং \( I \circ f = f \)। অর্থাৎ, অভেদ ফাংশন একটি ফাংশনের মান পরিবর্তন না করে সেটিকে অপরিবর্তিত রাখে।
ধরা যাক \( I: \mathbb{R} \rightarrow \mathbb{R} \) একটি অভেদ ফাংশন, যেখানে \( I(x) = x \)। এখানে:
এই ক্ষেত্রে প্রতিটি ইনপুট তার নিজস্ব মানকে আউটপুট হিসেবে ফেরত দেয়, তাই এটি একটি অভেদ ফাংশন।
অভেদ ফাংশন গাণিতিক বিশ্লেষণ এবং বিমূর্ত বীজগণিতে গুরুত্বপূর্ণ ভূমিকা পালন করে, বিশেষ করে যখন একটি ফাংশনের প্রকৃতি বা বৈশিষ্ট্য অক্ষুণ্ণ রাখা প্রয়োজন। এটি ফাংশন কম্পোজিশনের ক্ষেত্রে বিশেষভাবে কার্যকর, কারণ অভেদ ফাংশনের সাথে কম্পোজিশনে কোনো ফাংশনের আউটপুট অপরিবর্তিত থাকে।
ধ্রুবক ফাংশন (Constant Function) হলো এমন একটি ফাংশন, যেখানে প্রতিটি ইনপুটের জন্য আউটপুট একটি নির্দিষ্ট ধ্রুবক মান হয়। অর্থাৎ, ডোমেনের যেকোনো মানের জন্য আউটপুট সর্বদা একটি নির্দিষ্ট মানেই থাকে এবং পরিবর্তিত হয় না। ধ্রুবক ফাংশনের সাধারণ রূপ হলো \( f(x) = c \), যেখানে \( c \) একটি ধ্রুবক সংখ্যা।
১. নির্দিষ্ট আউটপুট: ধ্রুবক ফাংশনে যে মানই ইনপুট হিসেবে দেওয়া হোক না কেন, আউটপুট সবসময় একটি নির্দিষ্ট ধ্রুবক মান \( c \) হয়।
২. গ্রাফ: ধ্রুবক ফাংশনের গ্রাফ \( y = c \) রেখা বরাবর একটি অনুভূমিক (horizontal) রেখা হয়। এই রেখা \( y \)-অক্ষের উপর \( c \) পয়েন্ট দিয়ে অতিক্রম করে এবং এই রেখা কোনো ঢাল (slope) ধারণ করে না, অর্থাৎ ঢাল শূন্য।
৩. এক-এক বা সার্বিক নয়: ধ্রুবক ফাংশন এক-এক (one-to-one) বা সার্বিক (onto) নয়, কারণ এটি প্রতিটি ইনপুট মানের জন্য একই আউটপুট প্রদান করে এবং পুরো কোডোমেন কভার করে না।
ধরা যাক একটি ধ্রুবক ফাংশন \( f(x) = 7 \)।
এখানে যেকোনো ইনপুটের জন্য আউটপুট সর্বদা ৭, যা এই ফাংশনকে একটি ধ্রুবক ফাংশন হিসেবে সংজ্ঞায়িত করে।
ধ্রুবক ফাংশন বিভিন্ন গাণিতিক ও বাস্তব জীবনের পরিস্থিতিতে ব্যবহার করা হয়, যেখানে একটি নির্দিষ্ট মান অপরিবর্তিত থাকে। উদাহরণস্বরূপ, একটি বস্তুর তাপমাত্রা যদি একটি নির্দিষ্ট সময়ের জন্য অপরিবর্তিত থাকে, তবে সেই তাপমাত্রাকে ধ্রুবক ফাংশন দিয়ে প্রকাশ করা যায়।
বিপরীত ফাংশন (Inverse Function) হলো এমন একটি ফাংশন, যা একটি মূল ফাংশনের আউটপুটকে তার ইনপুটে পরিণত করে। অর্থাৎ, যদি \( f(x) \) একটি ফাংশন হয়, তবে এর বিপরীত ফাংশন \( f^{-1}(x) \) হবে, যা \( f(x) \) এর আউটপুট থেকে ইনপুটে ফিরে আসতে সাহায্য করে। বিপরীত ফাংশন শুধুমাত্র তখনই অস্তিত্ব রাখে যখন ফাংশনটি এক-এক এবং সার্বিক হয়।
১. আবর্তন: যদি \( f(x) \) এবং \( f^{-1}(x) \) বিপরীত ফাংশন হয়, তবে \( f(f^{-1}(x)) = x \) এবং \( f^{-1}(f(x)) = x \) হবে। অর্থাৎ, \( f \) এবং \( f^{-1} \) পরস্পরের বিপরীত এবং একে অপরকে আবর্তন করে।
২. ডোমেন এবং রেঞ্জের বিনিময়: মূল ফাংশনের ডোমেন বিপরীত ফাংশনের রেঞ্জ হয়ে যায় এবং মূল ফাংশনের রেঞ্জ বিপরীত ফাংশনের ডোমেন হয়ে যায়।
৩. গ্রাফে প্রতিফলন: বিপরীত ফাংশনের গ্রাফ মূল ফাংশনের গ্রাফের উপর \( y = x \) রেখার সাপেক্ষে প্রতিফলিত হয়।
ধরা যাক \( f(x) = 2x + 3 \) একটি ফাংশন।
এই ফাংশনের বিপরীত ফাংশন বের করতে:
১. \( y = 2x + 3 \) লিখুন।
২. \( x \)-এর মান বের করার জন্য \( y \) এবং \( x \) এর স্থান পরিবর্তন করুন: \( x = 2y + 3 \)।
৩. এরপর \( y \) বের করুন: \( y = \frac{x - 3}{2} \)।
তাহলে, \( f^{-1}(x) = \frac{x - 3}{2} \) হবে।
এখন, যদি \( f(x) = 2x + 3 \) এবং \( f^{-1}(x) = \frac{x - 3}{2} \), তবে \( f(f^{-1}(x)) = x \) এবং \( f^{-1}(f(x)) = x \) হবে, যা বিপরীত ফাংশনের শর্ত পূরণ করে।
বিপরীত ফাংশন বিভিন্ন গাণিতিক সমস্যার সমাধানে ব্যবহৃত হয়, যেমন ইনপুট থেকে আউটপুট এবং আউটপুট থেকে ইনপুট খুঁজে বের করা। বাস্তব জীবনের উদাহরণ হতে পারে কিলোমিটার থেকে মাইল রূপান্তর বা তাপমাত্রার ফারেনহাইট থেকে সেলসিয়াস রূপান্তর, যেখানে মূল রূপান্তর ফাংশনের বিপরীত ব্যবহার করে উল্টো দিকে মান নির্ধারণ করা হয়।
বিপরীত ফাংশনের ডোমেন এবং রেঞ্জ মূল ফাংশনের ডোমেন ও রেঞ্জের বিপরীত হয়। অর্থাৎ, মূল ফাংশনের রেঞ্জ বিপরীত ফাংশনের ডোমেন এবং মূল ফাংশনের ডোমেন বিপরীত ফাংশনের রেঞ্জ হয়ে যায়।
১. বিপরীত ফাংশনের ডোমেন: মূল ফাংশনের রেঞ্জ যা আউটপুট হিসেবে পাওয়া যায়, সেটিই বিপরীত ফাংশনের ডোমেন হবে।
২. বিপরীত ফাংশনের রেঞ্জ: মূল ফাংশনের ডোমেন যা ইনপুট হিসেবে ব্যবহৃত হয়, সেটিই বিপরীত ফাংশনের রেঞ্জ হবে।
ধরা যাক, \( f(x) = 2x + 3 \) একটি ফাংশন, যার ডোমেন এবং রেঞ্জ হলো সব বাস্তব সংখ্যা (Real Numbers)।
এর বিপরীত ফাংশন হলো \( f^{-1}(x) = \frac{x - 3}{2} \)।
এই ক্ষেত্রে:
এই নিয়মটি মূল ফাংশন ও বিপরীত ফাংশনের মধ্যে একটি গুরুত্বপূর্ণ সম্পর্ক তৈরি করে।
ত্রিকোণমিতিক ফাংশনের পর্যায় (Period of Trigonometric Functions) বলতে এমন একটি ধ্রুবক মানকে বোঝায়, যার জন্য ফাংশনের মান পুনরাবৃত্ত হয়। অর্থাৎ, ত্রিকোণমিতিক ফাংশনগুলো একটি নির্দিষ্ট সময় পরপর তাদের মান পুনরাবৃত্ত করে।
১. সাইন (sin) এবং কোসাইন (cos) ফাংশনের পর্যায়:
২. ট্যানজেন্ট (tan) এবং কোট্যানজেন্ট (cot) ফাংশনের পর্যায়:
৩. সেক্যান্ট (sec) এবং কোসেক্যান্ট (csc) ফাংশনের পর্যায়:
এই পর্যায় গুণফলের মাধ্যমে ত্রিকোণমিতিক ফাংশনের গ্রাফ বা মানগুলোকে প্রাকৃতিকভাবে পুনরাবৃত্তি করা যায়, যা গাণিতিক সমস্যার সমাধানে এবং বাস্তব জীবনের চক্রাকার ঘটনাগুলোতে ব্যবহার করা হয়।
দ্বিঘাত ফাংশন (Quadratic Function) হলো এমন একটি ফাংশন, যার ডিগ্রি ২ এবং সাধারণত এটি একটি প্যারাবোলা আকারের গ্রাফ তৈরি করে। দ্বিঘাত ফাংশনের সাধারণ রূপ হলো:
\[
f(x) = ax^2 + bx + c
\]
এখানে \(a\), \(b\), এবং \(c\) হলো ধ্রুবক, যেখানে \(a \neq 0\)।
১. ডোমেন: দ্বিঘাত ফাংশনের ডোমেন সব বাস্তব সংখ্যা \( \mathbb{R} \), কারণ এটি যেকোনো রিয়াল ইনপুট গ্রহণ করতে পারে।
২. রেঞ্জ: ফাংশনের গ্রাফ যদি উপরের দিকে খোলা প্যারাবোলা হয় (\( a > 0 \)), তাহলে এর রেঞ্জ হবে \( y \geq k \), যেখানে \( k \) হলো প্যারাবোলার সর্বনিম্ন বিন্দু (vertex)। আবার, যদি প্যারাবোলা নিচের দিকে খোলা হয় (\( a < 0 \)), তাহলে রেঞ্জ হবে \( y \leq k \), যেখানে \( k \) হলো প্যারাবোলার সর্বোচ্চ বিন্দু।
৩. শীর্ষ বিন্দু (Vertex): দ্বিঘাত ফাংশনের শীর্ষ বিন্দু বা ভেরটেক্স হলো প্যারাবোলার সেই বিন্দু, যেখানে এটি সর্বোচ্চ বা সর্বনিম্ন মান ধারণ করে। শীর্ষ বিন্দুটি \( \left( -\frac{b}{2a}, f\left(-\frac{b}{2a}\right) \right) \) দ্বারা নির্ধারিত হয়।
৪. অক্ষীয় প্রতিসাম্য (Axis of Symmetry): দ্বিঘাত ফাংশনের গ্রাফ প্যারাবোলা আকারে থাকে এবং এটি একটি প্রতিসাম্য অক্ষ (axis of symmetry) এর চারপাশে প্রতিসম থাকে। এই অক্ষটি \( x = -\frac{b}{2a} \)।
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
ধরা যাক একটি দ্বিঘাত ফাংশন \( f(x) = x^2 - 4x + 3 \)।
দ্বিঘাত ফাংশনের গ্রাফ প্যারাবোলা আকারে হয় এবং এটি \( y \)-অক্ষ বরাবর উভয় দিকে প্রতিসম থাকে। প্যারাবোলার শীর্ষ বিন্দুর উপর নির্ভর করে এটি উপরের দিকে খোলা বা নিচের দিকে খোলা থাকতে পারে।
দ্বিঘাত ফাংশন বাস্তব জীবনের বিভিন্ন চক্রাকার এবং সুনির্দিষ্ট পরিমাপের সমস্যায় ব্যবহৃত হয়, যেমন নিক্ষেপণ গতিবিদ্যা (Projectile Motion), অপটিমাইজেশন, এবং বক্রতা বিশ্লেষণে।
সূচক ফাংশন (Exponential Function) এমন একটি ফাংশন, যেখানে ভেরিয়েবলটি সূচকে বা ঘাতে থাকে। এটি সাধারণত নিম্নোক্ত আকারে প্রকাশ করা হয়:
\[
f(x) = a \cdot b^x
\]
এখানে:
১. ডোমেন: সূচক ফাংশনের ডোমেন হলো সব বাস্তব সংখ্যা, অর্থাৎ \( x \in \mathbb{R} \)।
২. রেঞ্জ: সূচক ফাংশনের রেঞ্জ \( y > 0 \), অর্থাৎ সব ধনাত্মক বাস্তব সংখ্যা।
৩. ক্ষয় ও বৃদ্ধির ধরন:
৪. অক্ষীয় ছেদ বিন্দু: যখন \( x = 0 \), তখন \( f(x) = a \cdot b^0 = a \cdot 1 = a \)। অর্থাৎ, সূচক ফাংশনের গ্রাফ সবসময় \( y \)-অক্ষকে \( (0, a) \) বিন্দুতে অতিক্রম করে।
৫. আসমানটোট: সূচক ফাংশনের একটি আসমানটোট থাকে, যা \( y = 0 \) রেখার সমান্তরাল এবং এই রেখাকে ফাংশনের মান স্পর্শ করে না।
১. যদি \( f(x) = 2^x \) হয়, তবে এটি একটি বৃদ্ধি ফাংশন (Exponential Growth), কারণ \( b = 2 > 1 \)। এখানে:
২. যদি \( f(x) = 0.5^x \) হয়, তবে এটি একটি ক্ষয় ফাংশন (Exponential Decay), কারণ \( 0 < b = 0.5 < 1 \)। এখানে:
সূচক ফাংশন বাস্তব জীবনের বিভিন্ন ক্ষেত্রে গুরুত্বপূর্ণ, যেমন:
সূচক ফাংশনের মাধ্যমে বিভিন্ন পরিবর্তনশীল গাণিতিক সমস্যা এবং চক্রাকার ঘটনাগুলোকে বিশ্লেষণ করা সহজ হয়।
লগারিদমিক ফাংশন (Logarithmic Function) হলো এমন একটি ফাংশন, যা একটি নির্দিষ্ট ভিত্তি (base) নিয়ে একটি সংখ্যার লগারিদম নির্ণয় করে। লগারিদমিক ফাংশন মূলত সূচক ফাংশনের বিপরীত (inverse) ফাংশন হিসেবে কাজ করে। এর সাধারণ রূপ:
\[
f(x) = \log_b(x)
\]
এখানে:
১. ডোমেন: লগারিদমিক ফাংশনের জন্য ডোমেন হলো সব ধনাত্মক বাস্তব সংখ্যা, অর্থাৎ \( x > 0 \)।
২. রেঞ্জ: লগারিদমিক ফাংশনের রেঞ্জ হলো সব বাস্তব সংখ্যা, অর্থাৎ \( y \in \mathbb{R} \)।
৩. বিপরীত ফাংশন: লগারিদমিক ফাংশন হলো সূচক ফাংশনের বিপরীত। অর্থাৎ, যদি \( f(x) = b^x \) হয়, তবে এর বিপরীত ফাংশন \( f^{-1}(x) = \log_b(x) \)।
৪. বেসের প্রভাব:
৫. অক্ষীয় ছেদ বিন্দু: লগারিদমিক ফাংশনের গ্রাফ \( (1, 0) \) বিন্দুতে \( x \)-অক্ষকে অতিক্রম করে, কারণ \( \log_b(1) = 0 \)।
৬. আসমানটোট: লগারিদমিক ফাংশনের একটি আসমানটোট থাকে, যা \( x = 0 \) রেখার সমান্তরাল। গ্রাফ কখনোই \( x = 0 \) রেখাকে স্পর্শ করে না।
১. প্রাকৃতিক লগারিদম (Natural Logarithm): যদি ভিত্তি \( e \) হয়, যেখানে \( e \approx 2.718 \), তাহলে লগারিদম ফাংশনটি \( \ln(x) \) বা \( \log_e(x) \) আকারে লেখা হয়। এটি প্রাকৃতিক লগারিদম নামে পরিচিত।
উদাহরণ: \( f(x) = \ln(x) \) এর জন্য ডোমেন হলো \( x > 0 \) এবং রেঞ্জ হলো সব বাস্তব সংখ্যা।
২. দশমিক লগারিদম (Common Logarithm): যদি ভিত্তি \( 10 \) হয়, তখন লগারিদমিক ফাংশনটি \( \log(x) \) বা \( \log_{10}(x) \) আকারে লেখা হয়।
উদাহরণ: \( f(x) = \log_{10}(x) \) এর জন্য ডোমেন হলো \( x > 0 \) এবং রেঞ্জ হলো সব বাস্তব সংখ্যা।
লগারিদমিক ফাংশন বিভিন্ন ক্ষেত্রে ব্যবহৃত হয়, যেমন:
লগারিদমিক ফাংশন আমাদের সূচকীয় পরিবর্তনশীলতার বিশ্লেষণ সহজতর করে, যা গণিতে এবং বিজ্ঞানের বিভিন্ন ক্ষেত্রে অত্যন্ত গুরুত্বপূর্ণ।
ত্রিকোণমিতিক ফাংশন (Trigonometric Functions) হলো এমন ধরনের ফাংশন, যা কোণ এবং তার সম্পর্কিত অনুপাত নিয়ে কাজ করে। ত্রিকোণমিতিক ফাংশনগুলো মূলত ডান-কোণযুক্ত ত্রিভুজের বাহুগুলোর অনুপাতের উপর ভিত্তি করে তৈরি হয়। প্রধান ত্রিকোণমিতিক ফাংশনগুলো হলো সাইন (sin), কোসাইন (cos), এবং **ট্যানজেন্ট (tan)**। এদের সঙ্গে সম্পর্কিত অন্যান্য ফাংশনগুলো হলো কোট্যানজেন্ট (cot), সেক্যান্ট (sec), এবং **কোসেক্যান্ট (csc)**।
১. সাইন (sin): \( \sin(\theta) \) হলো ডান-কোণযুক্ত ত্রিভুজের বিপরীত বাহু (opposite side) এবং অতিভুজ (hypotenuse) এর অনুপাত।
\[
\sin(\theta) = \frac{\text{বিপরীত বাহু}}{\text{অতিভুজ}}
\]
২. কোসাইন (cos): \( \cos(\theta) \) হলো সংলগ্ন বাহু (adjacent side) এবং অতিভুজের অনুপাত।
\[
\cos(\theta) = \frac{\text{সংলগ্ন বাহু}}{\text{অতিভুজ}}
\]
৪. কোট্যানজেন্ট (cot): \( \cot(\theta) \) হলো সংলগ্ন বাহু এবং বিপরীত বাহুর অনুপাত, যা \( \tan(\theta) \)-এর বিপরীত।
\[
\cot(\theta) = \frac{\text{সংলগ্ন বাহু}}{\text{বিপরীত বাহু}} = \frac{1}{\tan(\theta)}
\]
৫. সেক্যান্ট (sec): \( \sec(\theta) \) হলো অতিভুজ এবং সংলগ্ন বাহুর অনুপাত, যা \( \cos(\theta) \)-এর বিপরীত।
\[
\sec(\theta) = \frac{\text{অতিভুজ}}{\text{সংলগ্ন বাহু}} = \frac{1}{\cos(\theta)}
\]
৬. কোসেক্যান্ট (csc): \( \csc(\theta) \) হলো অতিভুজ এবং বিপরীত বাহুর অনুপাত, যা \( \sin(\theta) \)-এর বিপরীত।
\[
\csc(\theta) = \frac{\text{অতিভুজ}}{\text{বিপরীত বাহু}} = \frac{1}{\sin(\theta)}
\]
ত্রিকোণমিতিক ফাংশন বাস্তব জীবনের অনেক ক্ষেত্রে ব্যবহৃত হয়, যেমন:
ত্রিকোণমিতিক ফাংশন তাই গণিতে এবং বিজ্ঞানের নানা ক্ষেত্রে অত্যন্ত গুরুত্বপূর্ণ এবং কার্যকরী।
পরমমান ফাংশন (Absolute Value Function) এমন একটি ফাংশন, যা যেকোনো সংখ্যার ধনাত্মক মান প্রদান করে। সহজভাবে বললে, কোনো সংখ্যার পরমমান মানে হলো সেই সংখ্যার মূল মান, কিন্তু ধনাত্মক রূপে। পরমমান ফাংশনকে সাধারণত \( f(x) = |x| \) আকারে লেখা হয়।
\[
|x| =
\begin{cases}
x, & \text{যদি } x \geq 0 \
-x, & \text{যদি } x < 0
\end{cases}
\]
অর্থাৎ:
১. ডোমেন: পরমমান ফাংশনের ডোমেন হলো সব বাস্তব সংখ্যা, অর্থাৎ \( x \in \mathbb{R} \)।
২. রেঞ্জ: পরমমান ফাংশনের রেঞ্জ হলো সব ধনাত্মক বাস্তব সংখ্যা এবং শূন্য, অর্থাৎ \( y \geq 0 \)।
৩. গ্রাফ: পরমমান ফাংশনের গ্রাফ \( y = |x| \) হলো একটি V-আকৃতির রেখা, যা \( y \)-অক্ষ বরাবর প্রতিসম। এই গ্রাফটি মূলবিন্দু (0, 0) থেকে শুরু হয় এবং ধনাত্মক ও ঋণাত্মক উভয় দিকেই সমানভাবে বিস্তৃত হয়।
৪. প্রতিসাম্য: পরমমান ফাংশনের গ্রাফটি \( y \)-অক্ষের সাপেক্ষে প্রতিসম, যা নির্দেশ করে যে \( |x| = |-x| \)।
পরমমান ফাংশন গণিতের বিভিন্ন ক্ষেত্রে গুরুত্বপূর্ণ, যেমন:
পরমমান ফাংশন আমাদের কোনো সংখ্যার নির্দিষ্ট দূরত্ব বা পরিমাপকে ধনাত্মক রূপে প্রকাশ করতে সাহায্য করে, যা অনেক গাণিতিক সমস্যায় প্রয়োজনীয়।
আরও দেখুন...